High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

Abstract

General Description The MAX9993 high-linearity down-conversion mixer provides 8.5 dB of gain, +23.5 dBm IIP3, and 9.5 dB NF for UMTS, DCS, and PCS base-station applications. The MAX9993 integrates baluns in the RF and LO ports, a dual-input LO selectable switch, an LO buffer, a dou-ble-balanced mixer, and a differential IF output amplifier. The MAX9993 requires a typical LO drive of +3 dBm , and supply current is guaranteed to below 230 mA . The MAX9993 is available in a compact 20-pin thin QFN package ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$) with an exposed pad. Electrical performance is guaranteed over the extended $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The MAX9993 EV kit is available; contact the factory for more information.

UMTS and 3G Base Stations
DCS1800 and EDGE Base Stations
PCS1900 Base Stations
Point-to-Point Microwave Systems
Wireless Local Loop
Private Mobile Radio
Military Systems

\qquad

- +23.5dBm Input IIP3
- 1700 MHz to 2200 MHz RF Frequency Range
- 40 MHz to 350 MHz IF Frequency Range
- 1400 MHz to 2000 MHz LO Frequency Range
- 8.5 dB Conversion Gain
- 9.5dB Noise Figure
- Integrated LO Buffer
- Switch-Selectable (SPDT), Two LO Inputs
- Low 0 to $\mathbf{+ 6 d B m}$ LO Drive
- 40dB LO1-to-LO2 Isolation

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9993ETP-T	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	20 Thin QFN-EP

${ }^{*} E P=$ Exposed pad.

Pin Configuration/Functional Diagram

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

ABSOLUTE MAXIMUM RATINGS

V_{Cc}	-0.3V to 5.5 V
RF (RF is DC shorted to GND through balun)	
LO1, LO2 to GND	
TAP, IF+, IF- to GND	
LOSEL to GND-0.3V to ($\left.\mathrm{V}_{\mathrm{CC}}(\mathrm{pin} 8)+0.3 \mathrm{~V}\right)$	
LOBIAS, IFBIAS, LEXT to GND-0.3V to (VCC +0.3 V)	

Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
20-Lead Thin QFN
(derate $30.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$) 2200 mW
ӨJA... $33^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(Typical Operating Circuit as shown, no input RF or LO signals applied. $\mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage	VCC		4.75	5.00	5.25	V
Supply Current	Icc	Total supply current		202	230	mA
		$\mathrm{V}_{\text {cc }}$ (pin 8)		87	105	
		IF+/IF- (total of both)		103	133	
LOSEL Input High Voltage	V_{IH}		2.0			V
LOSEL Input Low Voltage	VIL				0.8	V
LOSEL Input Current	$\mathrm{I}_{\text {IL }}$ and $\mathrm{IIH}^{\text {l }}$		-5		+5	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS

(Typical Operating Circuit, $4.75 \mathrm{~V}<\mathrm{VCC}<5.75 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ}$, RF and LO ports are driven from 50Ω sources, $0 \mathrm{dBm}<$ PLO $<$ $+6 \mathrm{dBm}, \mathrm{PRF}_{\mathrm{RF}}=-5 \mathrm{dBm}, 1700 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}}<2200 \mathrm{MHz}, 1400 \mathrm{MHz}<\mathrm{fLO}<2000 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$. Typical values are for $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $V_{C C}=5.0 \mathrm{~V}, \mathrm{PLO}=+3 \mathrm{dBm}, \mathrm{f}_{\mathrm{RF}}=1900 \mathrm{MHz}, \mathrm{fLO}_{\mathrm{LO}}=1700 \mathrm{MHz}, 200 \mathrm{MHz}$ IF. $)($ Notes 1,2$)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
RF Frequency	f_{RF}		1700		2200	MHz
LO Frequency	flo	(Note 6)	1400		2000	MHz
IF Frequency	$\mathrm{fiF}^{\text {f }}$		50		350	MHz
Conversion Gain	Gc	(Note 3)		8.5		dB
Gain Variation Over Temperature		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.0012		dB/ $/{ }^{\circ} \mathrm{C}$
Gain Variation from Nominal (3б)				0.45		dB
Input Compression Point	$\mathrm{P}_{1 \mathrm{~dB}}$			12.6		dBm
Input Third-Order Intercept Point (Note 3)	IIP3	Two RF tones: -5 dBm each at 1950 MHz and 1951 MHz , LO: +3 dBm at 1750 MHz		24		dBm
		Two RF tones: -5dBm each at 2200 MHz and 2201 MHz , LO: +3 dBm at 2000 MHz		23		

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

AC ELECTRICAL CHARACTERISTICS (continued)

(Typical Operating Circuit, $4.75 \mathrm{~V}<\mathrm{VCC}<5.75 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ}$, RF and LO ports are driven from 50Ω sources, 0dBm $<$ PLO $<$ $+6 \mathrm{dBm}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, 1700 \mathrm{MHz}<\mathrm{f}_{\mathrm{RF}}<2200 \mathrm{MHz}, 1400 \mathrm{MHz}<\mathrm{fLO}<2000 \mathrm{MHz}, \mathrm{f}_{\mathrm{IF}}=200 \mathrm{MHz}$. Typical values are for $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $V_{C C}=5.0 \mathrm{~V}, \mathrm{PLO}=+3 \mathrm{dBm}, \mathrm{fRF}=1900 \mathrm{MHz}, \mathrm{fLO}=1700 \mathrm{MHz}, 200 \mathrm{MHz}$ IF. $)($ Notes 1,2$)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
IIP3 Variation Over Temperature		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		± 0.5			dB
Noise Figure	NF	$\mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{fLO}=1750 \mathrm{MHz},$ measured single-side band		9.5			dB
Required LO Drive	PLo			0	3	6	dBm
Spurious Response at IF	2×2	$\begin{array}{\|l\|} \hline 2 \mathrm{RF}-2 \mathrm{LO} \\ \text { PRF }=-5 \mathrm{dBm} \\ \mathrm{fRF}=1950 \mathrm{MHz} \\ \mathrm{fLO}=1750 \mathrm{MHz} \\ \mathrm{fSPUR}=1850 \mathrm{MHz} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{PLO}=+3 \mathrm{dBm} \\ & \mathrm{PLO}=+6 \mathrm{dBm} \end{aligned}$		65 70		dBc
	3×3	$\begin{aligned} & 3 \mathrm{RF}-3 \mathrm{LO} \\ & \mathrm{PRF}=-5 \mathrm{dBm} \\ & \mathrm{fRF}=1950 \mathrm{MHz} \\ & \mathrm{fLO}=1750 \mathrm{MHz} \\ & \mathrm{fSPUR}=1816.66 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{PLO}=+3 \mathrm{dBm} \\ & \hline \mathrm{PLO}=+6 \mathrm{dBm} \end{aligned}$		67 68		
Maximum LO-to-RF Leakage		PLO $=0 \mathrm{dBm}$ to +6 dBm , $\mathrm{fLO}=1400 \mathrm{MHz}$ to 2000 MHz			-19		dBm
Maximum LO-to-IF Leakage		PLo $=0 \mathrm{dBm}$ to +6 dBm , $\mathrm{fLO}=1400 \mathrm{MHz}$ to 2000 MHz			-21		dBm
Minimum RF-to-IF Isolation		$\mathrm{fRF}=1700 \mathrm{MHz}$ to 2200 MHz			37		dB
Conversion Loss, LO to IF		PLO $=+0 \mathrm{dBm}$, inject -20 dBm at 200 MHz into LO port, measure 200MHz at IF			28		dB
LO Switching Time		50% of LOSEL to IF settled to within 2 degrees			<50		ns
LO1-to-LO2 Isolation		(Note 4)			40		dB
RF Return Loss					19		dB
LO Return Loss		LO port selected			15		dB
		LO port unselected			14		
IF Return Loss		RF terminated, $\mathrm{PLO}=+3 \mathrm{dBm}$ (Note 5)			15		dB

Note 1: Guaranteed by design and characterization.
Note 2: All limits reflect losses of external components. Output measurements taken at IFOUT of the Typical Application Circuit.
Note 3: Production tested.
Note 4: Measured at IF port at IF frequency. fLO and $\mathrm{fLO2}$ are offset by $1 \mathrm{MHz}, \mathrm{PLO}=\mathrm{PLO2}=+3 \mathrm{dBm}$.
Note 5: IF return loss can be optimized by external matching components.
Note 6: Operation outside this range is possible, but with degraded performance of some specifications.

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

(MAX9993 EV Kit, VCC $=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=+3 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. For high-side LO injection curves, LO frequency is beyond maximum specified range, and is shown for completeness.)

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(MAX9993 EV Kit, VCC $=5.0 \mathrm{~V}, \mathrm{PRF}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=+3 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. For high-side LO injection curves, LO frequency is beyond maximum specified range, and is shown for completeness.)

INPUT P1dB Vs. RF REQUENCY
LOW-SIDE INJECTION
 RF FREQUENCY (MHz)

INPUT IP3 vs. RF FREQUENCY HIGH-SIDE INJECTION

LO SWITCH ISOLATION vs. RF FREQUENCY LOW-SIDE INJECTION

RF FREQUENCY (MHz)

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)
(MAX9993 EV Kit, VCC $=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=+3 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. For high-side LO injection curves, LO frequency is beyond maximum specified range, and is shown for completeness.)

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

Typical Operating Characteristics (continued)

(MAX9993 EV Kit, VCC $=5.0 \mathrm{~V}, \mathrm{PRF}_{\mathrm{RF}}=-5 \mathrm{dBm}, \mathrm{PLO}=+3 \mathrm{dBm}$, LO is low-side injected for a $200 \mathrm{MHz} \operatorname{IF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. For high-side LO injection curves, LO frequency is beyond maximum specified range, and is shown for completeness.)

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

Pin Description

PIN	NAME	FUNCTION
$1,6,8$	VCC	Power Supply Connections. See the Typical Application Circuit.
2	RF	Single-Ended 50Ω RF Input. This port is internally matched and DC shorted to GND through a balun. Provide a DC-blocking capacitor if required.
3	TAP	Center Tap of the Internal RF Balun. Bypass with capacitors close to the IC, as shown in the Typical Application Circuit.
$4,5,10,12$,	GND	Ground. Connect to supply ground. Provide multiple vias in the PC board to create a low- inductance connection between the exposed paddle (EP) and the PC board ground.
$13,14,17$, EP	LOBIAS	LO Output Bias Resistor for LO Buffer. Connect a 383 $\Omega \pm 1 \%$) from LOBIAS to GND.
7	LOSEL	LO Select. Logic control input for selecting LO1 or LO2.
9	LO1	Local Oscillator Input. LO1 selected when LOSEL is low.
11	LO2	Local Oscillator Input. LO2 selected when LOSEL is high.
15	External Inductor Connection. Connect a low-ESR 10nH inductor from LEXT to GND. This inductor carries approximately 100mA DC current.	
18	Noninverting IF Output. Requires external bias to VCC through an RF choke (see the Typical Application Circuit).	
19	IF+	Inverting IF Output. Requires external bias to VCC through an RF choke (see the Typical Application Circuit).
20	IFBIAS	IF Bias Resistor Connection for IF Amplifier. Connect a 523 Ω ($\pm 1 \%$) from IFBIAS to GND.

Detailed Description

The MAX9993 high-linearity down-conversion mixer provides 8.5 dB of gain and +23.5 dBm IIP3, with a 9.5 dB noise figure (typ). Integrated baluns and matching circuitry allow 50Ω single-ended interfaces to the RF and LO ports. A single-pole, double-throw (SPDT) LO switch provides 50 ns switching time between LO inputs, with typically 40dB LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX9993's inputs to 0 dBm to +6 dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced IIP2 performance.
Specifications are guaranteed over broad frequency ranges to allow for use in UMTS and 2G/2.5G/3G DCS1800 and PCS1900 base stations. The MAX9993 is specified to operate over an RF input range of 1700 MHz to 2200 MHz , an LO range of 1400 MHz to 2000 MHz , and an IF range of 40 MHz to 350 MHz . This device can operate in high-side LO injection applications with an extended LO range, but performance degrades gently as flo continues to increase. See the Typical Operating Characteristics for measurements taken with flo up to 2400 MHz . This device is available in a compact $5 \mathrm{~mm} \times 5 \mathrm{~mm} 20$-pin thin QFN package with an exposed pad.

RF Input and Balun
The MAX9993 has one input (RF) that is internally matched to 50Ω, requiring no external matching components. A DC-blocking capacitor is required, because the input is internally DC shorted to ground through the on-chip balun. Input return loss is better than 15dB over the entire RF frequency range of 1700 MHz to 2200 MHz .

LO Input, Switch, Buffer, and Balun

The mixer can be used for either high-side or low-side injection applications with an LO frequency range of 1400 MHz to 2000 MHz . An internal LO SPDT switch selects one of two single-ended LO ports. This allows the external oscillator to settle on a particular frequency before it is switched in. LO switching time is guaranteed to be less than 50ns. This switch is controlled by a digital input (LOSEL): logic low selects LO1, logic high selects LO2. LO1 and LO2 inputs are internally matched to 50Ω, requiring only a 22 pF DC-blocking capacitor.
A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from OdBm to +6 dBm . A low-loss balun along with an LO buffer drives the double-balanced mixer. All interfacing and matching from the LO inputs to the IF outputs are integrated on-chip.

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

Table 1. Component List

COMPONENT	VALUE	SIZE	
C1	4 pF	0603	Microwave capacitor
C2, C6, C7, C9, C10	22 pF	0603	Microwave capacitors
C3, C5, C8	$0.01 \mu \mathrm{~F}$	0603	Capacitors
C4	10 pF	0603	Microwave capacitor
C11, C12, C13	150 pF	0603	Microwave capacitors
L1, L2	470 nH	1008	Wire-wound high-Q inductors
L3	10 nH	0805	Wire-wound high-Q inductor
R1	523Ω	0603	$\pm 1 \%$ resistor
R2	383Ω	0603	$\pm 1 \%$ resistor
R3, R4	7.2Ω	1206	$\pm 1 \%$ resistors
R5	200Ω	0603	$\pm 5 \%$ resistor
T1	$4: 1(200: 50)$	-	IF balun

High-Linearity Mixer

The core of the MAX9993 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer; IIP3 is typically +23.5 dBm , IIP2 is typically +60 dBm , and total cascaded NF is 9.5 dB .

Differential IF Output Amplifier

The MAX9993 mixer has an IF frequency range of 40 MHz to 350 MHz . The differential, open-collector IF output ports require external pullup inductors to V_{CC}. Single-ended IF applications require a $4: 1$ balun to transform the 200Ω differential output impedance to a 50Ω single-ended output. After the balun, VSWR is typically 1.5:1.

Applications Information
 Input and Output Matching

The RF and LO inputs are internally matched to 50Ω. No matching components are required. Return loss at the RF port is better than 15 dB over the entire input range, 1700 MHz to 2200 MHz , and return loss at LO1 and LO2 is better than 10 dB from 1400 MHz to 2000 MHz . RF and LO inputs require only DC-blocking capacitors for interfacing. These DC-blocking capacitors can be part of the matching circuit.
The IF output impedance is 200Ω differential out of the IC. An external low-loss 4:1 balun brings this impedance down to a 50Ω single-ended output (see the Typical Application Circuit).

Bias Resistors
Bias currents for the LO buffer and the IF amplifier were optimized by fine-tuning the resistors at LOBIAS and IFBIAS during characterization at the factory. These currents should not be adjusted. If the $383 \Omega(\pm 1 \%)$ and/or $523 \Omega(\pm 1 \%)$ resistor values are not readily available, substitute standard $\pm 5 \%$ values: 390Ω and 520Ω, respectively.

Layout Considerations

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For best performance, route the ground pin traces directly to the exposed pad underneath the package. This pad should be connected to the ground plane of the board by using multiple vias under the device to provide the best RF/thermal conduction path. Solder the exposed pad on the bottom of the device package to a PC board exposed pad.

Power Supply Bypassing Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each $V_{c c}$ pin and TAP with the capacitors shown in the typical application circuit. Place the TAP bypass capacitor to ground within 100 mils of the TAP pin.

Chip Information

TRANSISTOR COUNT: 989
PROCESS: SiGe BiCMOS

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

High-Linearity 1700MHz to 2200MHz DownConversion Mixer with LO Buffer/Switch

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

COMMON DIMENSIONS												
PKG.	16L 5x5			20L 5x5			28L 5x5			32L 5x5		
SYMBOL	MIN.	NOM.	MAX.									
A	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05
A3	0.20 REF.											
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10
E	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10
e	0.80 BSC.			0.65 BSC.			0.50 BSC.			0.50 BSC.		
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50
N	16			20			28			32		
ND	4			5			7			8		
NE	4			5			7			8		
JEDEC	WHHB			WHHC			WHHD-1			WHHD-2		

EXPOSED PAD VARIATIONS						
PKG. CODES	D2			E2		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
T1655-1	3.00	3.10	3.20	3.00	3.10	3.20
T2055-2	3.00	3.10	3.20	3.00	3.10	3.20
T2855-1	3.15	3.25	3.35	3.15	3.25	3.35
T2855-2	2.60	2.70	2.80	2.60	2.70	2.80
T3255-2	3.00	3.10	3.20	3.00	3.10	3.20

NOTES:
. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.
3. NIS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL \#1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \#1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY
. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.
9. DRAWING CONFORMS TO JEDEC MO220

0. WARPAGE SHALL NOT EXCEED 0.10 mm

TTILLE:
PACKAGE OUTLINE
$16,20,28,32 \mathrm{~L}$, QFN THIN, $5 \times 5 \times 0.8 \mathrm{~mm}$
APPROVAL
DOCUMENT CONTROLNO.
$21-0140$
REV.

